Department of Computer Science

IT Academy Final Report

2006

AARN MAPPING TOOLS RESEARCH AND DEVELOPMENT

Author: Paige XIE

UPI: jxie011

Academic Mentor: Dr S Manoharan
Industry Sponsor: Barry Dowdeswell
Contents
3Understanding of the project

3What is done so far?

4What will be done later?

4An introduction to XML schemas and document type Documentation

Understanding of the project

The mapping tool is used to valid the incoming XML message or the data from database. In the message exchange architecture, EDIS map facilitates the creation of translation scripts in several ways. It offers a set of templates for standard translation tasks that can be easily modified and adapted according to the business rules of a particular business partner. New message translation scripts can be created by importing sample message or message schemas. The source (message definition) which is built by EDIS map will be compiled into a script. The script is run by EDIS events to retrieve the data from the database to build a XML message, or extract the data from the incoming XML message to store into the database. Here the schema is more important. The data should be validated when the script processes them in order to store in the database or write to the XML message.

[image: image1]
What is done so far?
During the first semester, I mainly deal with the documentations in order to fully understand how the project is going and the entire mapping tool functions.

I am required to write a technical document for AARN. It is entitled An Introduction to XML Schemas and Document Type Definitions. It is intended to be part of a set of technical specifications AARN Innovation Limited uses to fully document EDIS for Windows application suite. It is also designed to bring the developers in AARN Innovation Limited up-to-date on how XML Schemas and DTD really work.

I have also been helping Barry to write the Functional Specification for the EDIS map application that I will be working on next semester.

Basically, I have been re-developing the primary message definition document format that AARN Innovation Limited uses to hold the source code for each EDIS for Windows message translation. I am working with Christof to move it out of its original, comma-separated file format into a well-formed XML schema with additional application-definition elements.

What will be done later?

Next semester, I will start to code the message loading part of EDIS map. This will use the .Net XML components to unpack the new message definition schema and load it into an editing environment which is based on the new C# EDIS map application built by AARN Innovation Limited.
An introduction to XML schemas and document type Documentation

Here I will attach the documentation “An Introduction to XML Schemas and Document Type Definitions document” I wrote for AARN.

 An Introduction to

 XML Schemas and Document Type Definitions

[image: image2.png]

Paige Xie

© EDIS Technologies Limited 2006

Contents
8Introduction

9Document distribution list

9Copyright

9Document revision history

10What is XML?

10Document Type Definitions

11The Structure of Data Type Definitions for XML messages

14The W3C XML schema definition

14Getting Started with XML Schemas

16The Difference between Simple and Complex Types

16Simple Types

17Complex Types

18Namespace for XML document

19How the XML Schema Recommendation Specifies Validity

20Validating with XSV

20Validating a Schema

24Validating an Instance Document

25Example Schema: Delivery Receipt

29Comparison of DTD and XML schema

30Summary

30Citation

Introduction

XML format documents have become a primary means of storage for key parts of EDIS for Windows™ version 7. The previous flat-file format specification files used for message definitions have been re-designed as well-formed XML documents.

The document is an introduction to the syntax of the XML or eXtensible Markup Language. It is designed to allow developers who are re-developing EDIS for Windows to understand how best to design an XML-format document. It details the differences between XML Schemas and Document Type Definition specifications, the two primary roadmaps used to interpret the meaning of a particular XML document.

This guide should be read in conjunction with the following resources:

· The EDIS for Windows Development Roadmap. This document outlines the design philosophy behind the EDIS for Windows application suite. It profiles what the different component applications do and how they provide a complete e-commerce platform for our clients. It also documents concepts and details specific functions that are internal to our applications. During the development of these applications, this document is evolving and will ultimately become a detailed technical resource to guide on-going maintenance of the product. It explores the development of specific implementations of e-commerce clients including L’Oreal, Assa Abloy and the EDIS-1 hub.
· A Message Exchange Architecture for Modern E-Commerce. This paper by Christof Lutteroth explores the architecture of EDIS for Windows and is a great introduction to the high-level concepts of e-commerce applications.
· EDIS for Windows Resources. The folder of useful articles, Internet resources and Microsoft™ guidelines for .Net applications. During both the primary research and subsequent development phases, this knowledge base is evolving.

· The source code for example EDIS for Windows implementations. Each custom implementation of EDIS for Windows on a clients site consists of a set of EDIS scripts which are run when required by EDIS events™. These scripts illustrate what the EDIS environment is capable of providing and how it can meet specific client requirements.

· The EDIS for Windows Security Design document. This outlines how security is implemented and managed within the application. Access to this document is restricted to EDIS and AARN staff and may not be released to outside parties without the approval of the directors and the signing of a non-disclosure agreement.

· The way we walk is an AARN publication that outlines the company and development philosophies that guide all the activities at AARN innovation, the R&D organization that manages all the development for the EDIS products.
Document distribution list

The document contains information that is to be considered commercially sensitive to EDIS Technologies Limited and their development partners. This document may not be distributed to anyone else outside of our organization without the express permission of EDIS. If you have any queries regarding this document or wish to release a copy to anyone, please contact the author by email at paige@aarn.biz 64 9 271 0316.

Copyright

EDIS for Windows(, EDIS map™ EDIS events(, EDIS db(and EDIS admin(are trademarks of the EDIS Technologies Limited.

This document is copyright of the EDIS Technologies Limited 2006. All rights reserved.

Document revision history

	09 May 2006
	PXI
	Original version created from archival EDIS documents and distributed for comment.

What is XML?
The Extensible Markup Language (XML) is a W3C-recommended general-purpose markup language for creating special-purpose markup languages. They are capable of describing many different kinds of data. It is a simplified subset of the Standard Generalized Markup Language (SGML).
Its primary purpose is to facilitate the sharing of data across different computer systems, particularly systems connected via the Internet. Complete languages based on XML such as the Geography Markup Language (GML), MathML, Physical Markup Language (PML), MusicXML and cXML) are defined in a formal way, allowing programs to modify and validate documents in these languages without prior knowledge of their form. [9]
A schema is a linguistic model which provides a means for defining the structure, content and to some extent, the semantics of XML documents. There are two main schema types used to validate the XML documents; the DTD or Document Type Definition and the XML schema.
Document Type Definitions
A Document Type Definition or DTD is a set of formal definitions for the individual data elements that are used in an XML document. It is far more simplistic than the XML schemas we will examine later in this document
The purpose of the DTD is to define the structure of a class of similar documents by describing each allowable element and attribute by using a formal declaration language. Element declarations name the allowable set of elements within the document, and specify whether and how declared elements and runs of character data may be contained within each element. Attribute-list declarations name the allowable set of attributes for each declared element, including the type of the data that is allowed to be stored in each attribute value. It is also possible to specify that the data must be a member of a set of pre-defined values.

At its most fundamental level, the DTD is expressed as a Context-Free Grammar. In linguistics and computer science, a grammar is an abstract structure that describes a formal language precisely. An abstract structure is a set of laws, properties and relationships that is defined independently of any physical objects.
A context-free grammar or CFG is a formal grammar in which every production rule is of the form V → w where V is a non-terminal symbol and w is a string consisting of terminals and/or non-terminals. A terminal symbol is a symbol that represents a constant value. A non-terminal symbol is that symbol which has the capability of being further defined in terms of terminals and/or non-terminals. The term "context-free" comes from the fact that the non-terminal V can always be replaced by w, regardless of the context in which it occurs. A formal language is context-free if there is a context-free grammar that generates it.
The Structure of Data Type Definitions for XML messages

An XML file contains nested tags (the markup) and the content (the data between the tags). However, an xml file may also contain an optional DTD (Data Type Definition) to specify specific requirements for the tags and the XML structure. When using a DTD, the definitions appear before the content, like:

<?xml version="1.0"?>
<!DOCTYPE name-of-document-type [
 .
 .
 . Element definitions fit inside these square brackets for this type of document
 .
 .]>

Following the DTD are the XML tags and data. The first and last tags are:

<name-of-document-type>.
.
. the detailed XML tags and data are contained within this outside tag pair
.
</name-of-document-type>

These two "outside" tags thus contain the whole collection of XML tags and data just like the <BODY></BODY> tag pairs.

Tag names ARE CASE SENSITIVE. <FRED> and <fred> are different tags.

The nested element definitions then appear in order between the square brackets of the DTD. For each element of the name-of-document-type, its definition in the DTD will appear as:
<!ELEMENT name-of-element (list-of-elements or data definition) >

The list-of-elements names the elements (i.e., tags) and specifies the element requirements by following the ELEMENT name with either:

1. , (a comma means strict order)

2. ? (element is optional)

3. + (one or more elements)

4. * (zero or more elements)

5. | (select one of the elements)

6. () (groups elements together)

For example, a purchase-order might contain:

1. buyer-name

2. address

3. city

4. state

5. zip

6. then multiple order-line, each with:

1. product-code

2. quantity

3. price

The DTD would then begin like this:

<?xml version="1.0"?>
<!DOCTYPE purchase-order [
<!ELEMENT purchase-order (buyer-name, address+, city, state, zip, order-line+)
.
.
.]

Thus the purchase-order document has as its root a purchase-order. The purchase-order has: a buyer-name pair, one or more address tag pairs, one each city, state and zip tags, and one or more order-line tags. Each order-line has a set of product-code, quantity and price tags.

<!ELEMENT name-of-element (#PCDATA)>

(#PCDATA) means that the content of the ELEMENT (i.e., the value between the tag pairs) is parsed character data. PCDATA cannot contain the characters "<", ">" or "&". To include these characters as data use "<" for “<”, ">" for “>”, and "&" for “&”. The data can be also specified as CDATA which is unparsed character data where the characters “<”, “>”, and “&” are allowed.

The full DTD would be:

	
<?xml version="1.0"?>
<!DOCTYPE purchase-order [
<!ELEMENT purchase-order (buyer-name, address+, city, state, zip, order-line+)
<!ELEMENT buyer-name (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT order-line (product, quantity, price) >
<!ELEMENT product (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >
<!ELEMENT price (#PCDATA) >
]

Then adding some sample content data, the full xml file would be:

	
<?xml version="1.0"?>
<!DOCTYPE purchase-order [
<!ELEMENT purchase-order (buyer-name, address+, city, state, zip, order-line+) >
<!ELEMENT buyer-name (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT order-line (product, quantity, price) >
<!ELEMENT product (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >
<!ELEMENT price (#PCDATA) >
]
> <purchase-order>
 <buyer-name>Michael S. Parks</buyer-name>
 <address>4099 Bayview Street</address>
 <address>Apartment 5</address>
 <city>Houston.</city>
 <state>TX</state>
 <zip>77001</zip>
 <order-line>
 <product>Wool Sweater </product >
 <quantity>2</quantity>
 <PRICE>49.95 </PRICE >
 </order-line>
 <order-line>
 <product>Gloves</product >
 <quantity>1</quantity>
 <price>19.95 </price >
 </order-line>
</purchase-order>

If the multiple purchase orders are included, modifying the DTD schema to be:

	
<!DOCTYPE stack-of-purchase-orders [
<!ELEMENT stack-of--purchase-orders (purchase-order) + >
<!ELEMENT purchase-order (buyer-name, address+, city, state, zip, order-line+) >
<!ELEMENT buyer-name (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT order-line (product, quantity, price) >
<!ELEMENT product (#PCDATA) >
<!ELEMENT quantity (#PCDATA) >
<!ELEMENT price (#PCDATA) >
]

Now a stack-of-purchase-order is just one or more (+) purchase-order tag pairs.

Any ELEMENT may also have Attributes. These are parameters that describe the ELEMENT and are optional. Many HTML tags use attributes.
The <TABLE> tag, for example can have attributes like: BGCOLOR, LINK, VLINK, ALINK, etc... These tags are defined inside the beginning tag. The general format for the attribute tag in the DTD schema is:

	<!ATTLIST
	name-of-element
	name-of-attribute
	CDATA
or
(list-of-attribute-values
separated by |'s)
	#REQUIRED
#IMPLIED
#FIXED
	"default value"
	>

#REQUIRED means the attribute must always be present
#IMPLIED means that the attribute has no default value and is NOT required
#FIXED means the default value cannot be replaced

For example, if the product element always needs a buyer-size attribute of either "S", "M", "L", or "XL" the product ELEMENT in the DTD would be:

<!ELEMENT product (#PCDATA)>
<!ATTLIST product buyer-size (S | M | L | XL) #REQUIRED >

A typical content tag for product might be:
<product buyer-size="M">gloves</product>
The W3C XML schema definition

The Document Type Definition (DTD) language, which is native to the XML specification, is a schema language that is of relatively limited capability. As the XML messages become more and more popular, the requirements for validating XML documents have to be improved as well. Another very popular, more expressive XML schema language, XML Schema came out at this stage.
An XML schema is a description of a type of XML document, typically expressed in terms of constraints on the structure and content of documents of that type, above and beyond the basic syntax constraints imposed by XML itself. An XML schema provides a view of the document type at a relatively high level of abstraction.

Like all XML schema languages, XML Schema can be used to express a schema: a set of rules to which an XML document must conform in order to be considered 'valid' according to that schema. However, unlike most other schema languages, XML Schema was also designed with the intent of validation resulting in a collection of information adhering to specific data types, which can be useful in the development of XML document processing software, but which has also provoked criticism. [2]
Getting Started with XML Schemas
The best way to start learning the syntax for XML Schemas is to jump in with an example. To start with, a schema for the following simple document is created:

	<?xml version = "1.0" ?>

<Customer>

 <FirstName>Raymond</FirstName>

 <MiddleInitial>G</MiddleInitial>

 <LastName>Bayliss</LastName>

</Customer>

A document conforming to a schema is known as an instance document, so the following is an XML Schema for this instance document; later it will be explained line by line (name the file Customer.xsd):
	<?xml version = "1.0" ?>

<schema xmlns = "http://www.w3.org/2001/XMLSchema">

 <element name = "Customer">

 <complexType>

 <sequence>

 <element name = "FirstName" type = "string" />

 <element name = "MiddleInitial" type = "string" />

 <element name = "LastName" type = "string" />

 </sequence>

 </complexType>

 </element>

</schema>

XML Schema files are saved with the .xsd extension. The Customer.xsd schema is itself an XML document, and the root element of any XML Schema document is an element called schema. In the opening schema tag the namespace for the XML Schema Recommendation are declared:

<schema xmlns = "http://www.w3.org/2001/XMLSchema">
The next line indicates how we declare our first element, the Customer element:
 <element name = "Customer">

...

 </element>

As XML is intended to be a self-describing data format, it is hardly surprising that elements are declared using an element called element, and the intended name of the element is specified as a value of an attribute called name. In this case, the root element is called Customer, which is the value of the name attribute.
The complexType element that appears on the next line will be explained in just a moment, but looking further down the schema, there are the declarations for the three other elements that appear in the document: one called FirstName, one called MiddleInitial, and one called LastName.
	<sequence>

 <element name = "FirstName" type = "string" />

 <element name = "MiddleInitial" type = "string" />

 <element name = "LastName" type = "string" />

</sequence>

The elements are declared, nested inside an element called sequence, which they would have to appear in that same order in a conforming document. The sequence element is known as a compositor, a compositor is required to be specified inside the complexType element.

In addition, the element declarations carry a type attribute, whose value is string. XML Schema introduces the ability to declare types such as string, date and integer, as that would be found in languages such as SQL and Java; this is how such types are specified.

Now come back to the element which have not be looked at yet, called complexType, which contains the declarations of the elements that appear as children of the Customer element in our sample XML document. XML Schema makes a distinction between simple types and complex types.

The Difference between Simple and Complex Types
There are two kinds of type in XML Schema: simple types and complex types both of which constrain the allowable content of an element or attribute:

Simple types restrict the text that is allowed to appear as an attribute value, or text-only element content (text-only elements do not carry attributes or contain child elements)

Complex types restrict the allowable content of elements, in terms of the attributes they can carry, and child elements they can contain

Simple Types
All attribute values and text-only element content simply consists of strings of characters. The ability for XML Schema to support datatypes means that we can place restrictions on the characters that can appear in attribute values and text-only element content.
An XML Schema aware processor is required to support a number of built-in simple types that are considered common in programming languages and databases, and a number of datatypes that the working group thought were important to XML document authors. This is why it was allowed to specify that the content of the FirstName, MiddleInital, and LastName elements were strings (which place very little restriction on the allowable text of the element content):
	<element name = "FirstName" type = "string" />

<element name = "MiddleInitial" type = "string" />

<element name = "LastName" type = "string" />

In addition to the built-in simple types, XML Schema allows users to derive their own simple types that restrict the allowable content of the built-in simple types already defined in XML Schema.
Complex Types
Complex types define the attributes an element can carry, and the child elements that an element can contain. Whenever users want to allow an element to carry an attribute or contain a child element, they have to define a complex type.
The Customer element declared in the Customer.xsd example is allowed to contain three child elements (FirstName, MiddleInitial, and LastName), and therefore needs to be a complex type. We gave the Customer element a complex type using the complexType element nested inside the element that declared Customer. We then declared the number of child elements the element Customer is allowed to contain inside the complexType element and its compositor sequence, like so:
	<complexType>

 <sequence>

 <element name = "FirstName" type = "string" />

 <element name = "MiddleInitial" type = "string" />

 <element name = "LastName" type = "string" />

 </sequence>

</complexType>

Note that it is impossible to nest the other element declarations inside each other. The following would not be allowed:
	<element name = "Customer">

 <element name = "FirstName" type = "string" />

 <element name = "MiddleInitial" type = "string" />

 <element name = "LastName" type = "string" />

</element>

This is not allowed because the complex type is needed to be defined in order for the Customer element to contain child elements.
The complex type defined above is known as an anonymous complex type. This is because it is nested within the element declaration (Customer, in this case). If users wanted more than one element to contain the same child elements and carry the same attributes, then they would create a named complex type, which would apply the same restrictions to the content of our new element.
Let's quickly add to the Customer element in our example XML document, by giving it an attribute called customerID. New document looks as follows:
	<?xml version = "1.0" ?>

<Customer customerID = "24332">
 <FirstName>Raymond</FirstName>

 <MiddleInitial>G</MiddleInitial>

 <LastName>Bayliss</LastName>

</Customer>

To add the attribute users can just declare it within the complexType definition, after the closing sequence compositor tag and just before the closing complexType tag:
	<?xml version = "1.0" ?>

<schema xmlns = "http://www.w3.org/2001/XMLSchema">

 <element name = "Customer">

 <complexType>

 <sequence>

 <element name = "FirstName" type = "string" />

 <element name = "MiddleInitial" type = "string" />

 <element name = "LastName" type = "string" />

 </sequence>

 <attribute name = "customerID" type = "integer" />
 </complexType>

 </element>

</schema>

An attribute is declared using an element called attribute. As with the element declaration, it carries an attribute called name whose value is the name of the attribute. Remember the value of an attribute is always a simple type; in this case users want their customerID attribute to be represented as an integer, so they can use the built-in type of integer to restrict the value of the attribute to an integer value.
Namespace for XML document
Having understood some of the basics for writing XML Schemas, we should look at how we validate document instances. You may have noticed that none of the sample XML documents have indicated a link to the XML Schema they are supposed to correspond to. They have not included an equivalent of the Document Type Declaration (whether it refers to inline definitions or an external DTD). This is because there is no direct link of any kind between an instance document and its XML Schema.
A document author can indicate where a copy of the schema they used to write the document can be found using the xsi:schemaLocation attribute, whose value is a URL, however there is no requirement for the processor to use the indicated schema.
For example we could use the following to indicate where the Customer.xsd file can be found:
	<?xml version = "1.0" ?>

<Customer xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation = "http://www.wrox.com/ProXMLSchemas/

 Customer.xsd">

 ...

</Customer>

Note that users have had to declare the XML Schema for Instance Documents namespace and its prefix xsi: in order to use the schemaLocation attribute (as the schemaLocation attribute is defined in that namespace).

Parsers can ignore or override the suggestion in the schemaLocation attribute; they may decide to use a different schema or use a cached copy of the suggested schema.
Sometimes it is helpful to be able to validate a document against a different schema than that which it was authored against. Therefore we can leave it up to the program that hands the XML document to the parser to say which schema to use to validate it.
Note also that we have not so far been indicating the intended namespace to which our schema belongs. This means that the markup we have been creating does not belong to a namespace. In this case we need to use the xsi:noNamespaceSchemaLocation attribute on the root element, like this:
	<?xml version = "1.0" ?>

<Customer xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "Customer.xsd">

 ...

</Customer>

This indicates to the parser where it can find a copy of the schema that doesn't belong to a namespace.

How the XML Schema Recommendation Specifies Validity

Before looking at validation it is worthwhile taking a moment to understand how the XML Schema Recommendation determines validity. The XML Schema Recommendation is written in terms of an abstract model (rather like the DOM Recommendation). This corresponds to information items as defined in the XML Information Set.
The purpose of the XML Information Set (or Infoset) is to provide a consistent set of definitions that can be used in other specifications that refer to information held within a well-formed XML document.
Any well-formed XML document has an information set (as long as it also conforms to the XML Namespaces Recommendation). This in turn means that an XML Schema and all instance documents must be well-formed in order for them to be processed by a parser. After all, a document that is not well-formed does not have an information set.
The infoset presents an XML document's information set as a modified tree. We should be clear however, that the XML Schema Recommendation does not require that an XML Schema aware processor's interfaces make the infoset available as a tree structure – the document may just as equally be accessed by an event-based approach (such as that implemented in SAX processors) or a query-based interface. However, the term information set can be treated as analogous to the term tree.
An XML document's information set consists of a number of information items, each of which can be treated as analogous to a node on the tree. An information item is an abstract representation of some part of a document, and each information item has a set of associated properties. At minimum, a well-formed XML document will have a document information item. There are 14 information items in all; here are the ones that we are most concerned with:

· The document information item is the unique element in which all other markup is nested within a well-formed XML document. In the case of an XML Schema document, the document information item would correspond to the schema element.

· An element information item exists for every element that appears in an XML document.
· An attribute information item exists for each attribute, whether specified or defaulted, of each element in the document.
· A character information item exists for each data character in the document, whether literally or as a character reference, or within a CDATA section. Each character is a logically separate information item, although many processing applications chunk characters into larger groups.
· A namespace information item exists for each namespace that is in the scope for that element.

By talking in terms of an abstract tree representation, the schema specification can then ensure that each information item in an instance document respects the constraints imposed by the corresponding information item in the schema. This is known as local schema-validity.
There is a second level of schema validity, which represents the overall validation outcome for each item. This is where the local schema-validity of an information item corresponds with the results of the schema-validity assessments performed upon its descendents, if it has any. So, a parent element is checked against the schema-validity assessments of its child information items.

Therefore, as long as the information items are locally schema-valid, and they correspond with child information items, an instance document will be valid. At each stage, augmentations (in the form of properties) may be added to the information items in the information set to record the outcome and help the processor achieve its task.

So, each of the components that make up any schema are used to determine whether an element or attribute in an instance document is valid. In addition, a processor may check augmentations (such as default values) placed upon those elements, attributes, and their descendents.

Validating with XSV

XSV (XML Schema Validator) is an ongoing open source project; developed at the University of Edinburgh in the UK by Henry Thompson and Richard Tobin (Henry Thompson is also co-author of the XML Schema Recommendation, Part 1). Written in Python, it is available for download either as source, or as a Win32 executable. Alternatively, you can use it as an online utility. XSV is available from:

· http://www.ltg.ed.ac.uk/~ht/xsv-status.html (for download)

· http://www.w3.org/2001/03/webdata/xsv (to use online)
Validating a Schema
Here is a simple schema validating, name.xsd:
	<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "firstName" type = "xs:string" />

 <xs:element name = "middleInitial" type ="xs:string"/>

 <xs:element name = "lastName" type = "xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

If validating this schema online, then output should be like this:

[image: image3.jpg]Schema valldsdug with XSV 11967195 of 2001/06/16 11:56:55

ot sd v iy

Using the downloaded version of XSV, you can check that this is a valid schema by simply running it from the command line with a -i flag:

[image: image4.jpg]"Mt w03 -0ng, 2080/05 /zu’ />
c: \ProxMLEC hemas>

(Note that the folder in which XSV is installed included in the PATH variable). The output here isn't immediately obvious, so a quick show will be introduced here (see the screenshot below). Since instanceAccessed='false' and that the target is [standalone schema assessment], a schema file here rather than an XML instance document is focus. Note that no schema errors are listed.
If IE5 or above are used to run, a more user-friendly version will be given and the XML output can be redirected to another file, including a style sheet for display, with the command:

> xsv -o xsv-out.xml -s xsv.msxsl -i name.xsd
If MSXML 3 is installed, xsv.msxsl is replaced with the XSLT 1.0 compliant version of the stylesheet, xsv.xsl. The result can be viewed in the browser:

[image: image5.jpg]et Sw pwortes Tois o

- 0B A B

[e ERC)

Schema valldasing with XSV 1195197 of 2001/06/09 19:

+ Targer (sranaaions sonena ssscament
1

+ schemaDacs: name. 2

+ The schema(s) wed o schema valdaton b o ercrs

« instanceAssessed: fler

i = T

Note that you can use xsv -? for information on all the possible flags.
So that covers the basic ways of using XSV. Now here are some of the error messages that occur if the schema is not error free. Suppose, for example, there is a simple typographical mistake, such as spelling the name attribute wrongly, or forgetting to close one of the elements:
	<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element nsme = "firstName" type = "xs:string" />

 <xs:element name = "middleInitial" type= "xs:string"/>

 <xs:element name = "lastName" type = "xs:string" />

 </xs:sequence>

 <xs:complexType>
 </xs:element>

</xs:schema>

In this case, XSV warns that there is an undeclared attribute name, on the element element, and that a complexType declaration is out of place:

[image: image6.jpg]R
e

SO0 e e G B
ot [oo

Schema valdsing with X5V L1SS'L97 of 20010609 1901405

Laveteve XN wll ormedees o validy procssing oneput

The reason the second error message takes this form is that XSV thinks that because a / is forgotten to add in the closing tag, and a second complexType element is tried to nest inside the first, which is not allowed. The line number of each error is also given in XSV. While the mistakes may be quite obvious in the simple schema, this information becomes very helpful when working with more complex examples.
Here, xsi:noNamespaceSchemaLocation attribute is used to indicate the location of the schema document to which the XML instance document conforms. In this case, it is in the same directory. But if this is validated with the online version of XSV, both the XML file and the schema file need to be accessible over the web. Here's what the results look like for this file, name.xml:

[image: image7.jpg]liged o g e G et TSNS
[T

LR s

——

There are no schema-validity problems in the target and that the "Validation was strict": this means that the instance document has correctly validated against the schema. If the validation is described as "lax", then the document is known not to be validated, though it may be well formed. Note also the line at the bottom of the output, "Attempt to import a schema document from http://apache.wrox.co.uk/name.xsd for no namespace succeeded". This means that XSV has successfully found and loaded the correct schema document.
Validating an Instance Document
Now validating an instance document against the simple schema:
	<?xml version = "1.0" encoding = "UTF-8"?>

<Name xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="name.xsd">

 <firstName>John</firstName>

 <middleInitial>J</middleInitial>

 <lastName>Johnson</lastName>

</Name>

Here, the xsi:noNamespaceSchemaLocation attribute is used to indicate the location of the schema document to which the XML instance document conforms. In this case, it is in the same directory. Note that if this is not validated with the online version of XSV, both the XML file and the schema file need to be accessible over the web. Here's what the results look like for this file, name.xml:

[image: image8.jpg]liged o g e G et TSNS
[T

LR s

——

Now an instance document is validated with .the local version of XSV, not a schema, a different command is used here instead of using the –I flag:
> xsv -o xsv-out.xml -s xsv.msxsl name_2.xml
And this is what the output looks like:

[image: image9.jpg]YRl s o s

e

Prohlems with doe schema valdit of e tanget

B Ny ———————
[e———e e

e T

In the first part of the output, there is the line "2 schema-validity problems were found in the target". In the section below, where the problems are listed in detail, there is a title element that is not allowed according to the schema, and XSV was expecting the firstName element to appear in its place. The first number after the file name (in this case 4) indicates the line number on which the error occurred. Again, this information can be very useful when debugging schemas.
Example Schema: Delivery Receipt
In this example, it will show how to create a schema for a delivery receipt called DeliveryReceipt.xsd. The schema contains constructs for names, addresses, and delivery items.

The delivery receipt is held within a root element called DeliveryReceipt, which has two attributes, deliveryID and dateReceived. The customer's name and address are then held within an element called Customer. Finally, the delivered items will be held within an Items element.

Here is a sample document marked up according to the DeliveryReceipt.xsd schema called DeliveryReceipt.xml:
	<?xml version = "1.0" ?>

<DeliveryReceipt deliveryID = "44215"

 dateReceived = "2001-04-16"

 xsi:noNamespaceSchemaLocation =

 "http://file_Location/DeliveryReceipt.xsd"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-

 instance">

 <Customer>

 <Name>

 <FirstName>Ray</FirstName>

 <MiddleInitial>G</MiddleInitial>

 <LastName>Bayliss</LastName>

 </Name>

 <Address>

 <AddressLine1>10 Elizabeth Place</AddressLine1>

 <AddressLine2></AddressLine2>

 <Town>Paddington</Town>

 <City>Sydney</City>

 <StateProvinceCounty>NSW</StateProvinceCounty>

 <ZipPostCode>2021</ZipPostCode>

 </Address>

 </Customer>

 <Items>

 <DeliveryItem quantity = "2">

 <Description>Small Boxes</Description>

 </DeliveryItem>

 </Items>

</DeliveryReceipt>

Note how to indicate to a parser that it will be able to find a schema to validate the document using the xsi:noNamespaceSchemaLocation attribute in the root element. The constructs in the schema do not belong to a namespace. In order to use this attribute, the namespace for the XML Schema is needed to declare for instance documents:
	<DeliveryReceipt deliveryID = "44215"

 dateReceived = "2001-04-16"

 xsi:noNamespaceSchemaLocation =

 "http://file_Location/DeliveryReceipt.xsd"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-

 instance">

Now turning to the schema used for our Delivery Receipt documents. The schema is called DeliveryReceipt.xsd:
	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "DeliveryReceipt">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "Customer">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "Name" />

 <xs:element ref = "Address" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "Items">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "DeliveryItem"

 minOccurs = "1"

 maxOccurs = "unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name = "deliveryID" type = "xs:integer" />

 <xs:attribute name = "dateReceived" type = "xs:date" />

 </xs:complexType>

 </xs:element>

 <xs:element name = "Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "FirstName" type = "xs:string" />

 <xs:element name = "MiddleInitial" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "LastName" type = "xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "Address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "AddressLine1" type="xs:string" />

 <xs:element name = "AddressLine2" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "Town" type = "xs:string" />
 <xs:element name = "City" type = "xs:string"

 minOccurs = "0" maxOccurs = "1" />

 <xs:element name = "StateProvinceCounty"

 Type = "xs:string"/>

 <xs:element name = "ZipPostCode" type = "xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name = "DeliveryItem">

 <xs:complexType>
 <xs:sequence>

 <xs:element name = "Description" type = "xs:string"/>

 </xs:sequence>

 <xs:attribute name = "quantity" type = "xs:integer" />

 </xs:complexType>

 </xs:element>

</xs:schema>

There are a few notes for this schema:

· The Name, Address, and DeliveryItem elements have been defined globally, which also means that this schema could be used to validate documents only containing these elements
· the Customer element's content model is build using references to the globally declared Name and Address elements

All of the elements defined by the XML Schema Recommendation are prefix in order to start off declaring the namespace for XML Schema.
 <xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

The root element DeliveryReceipt is defined. Because it contains Customer and Items element elements (as opposed to being a text-only element), it has been associated with complex type using the complexType element. This also contains a sequence compositor, requiring that the Customer element appear before the Items element.
Between the closing sequence and complexType elements, the two attributes are declared that are carried by the DeliveryReceipt element: deliveryID, whose type is an integer, and dateReceived, whose type is a date type:
	<xs:element name = "DeliveryReceipt">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "Customer">

 ...

 </xs:element>

 <xs:element name = "Items">

 ...

 </xs:element>

 <xs:attribute name = "deliveryID" type="xs:integer" />

 <xs:attribute name = "dateReceived" type="xs:date" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Inside the declaration of the DeliveryReceipt element there is a declaration of the Customer and Items elements. Both Customer and Items contain child elements, a complexType element is needed to use inside each of them, along with a compositor, which is the sequence element, to indicate the order in which they can appear. Customer and Items are made up of references to globally declared elements using the ref attribute:
	<xs:element name = "Customer">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "Name" />

 <xs:element ref = "Address" />

 </xs:sequence>

 </xs:complexType>

</xs:element>
<xs:element name = "Items">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref = "DeliveryItem"

 minOccurs = "1"
 maxOccurs = "unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

Comparison of DTD and XML schema

An introduction is made above for DTD and XML schema, now it is turn to the comparison between them. Data types are not specified in DTD, in this case, users can enter what values they like, even some funny data. Like the element phone, users can enter a string value as long as it is a parsed value, but in reality, phone number is a number value. Also the DTD format is so flat that it is difficult to know which one is root and which element is sub-element, since it is not a sharked format. As an old schema, DTD is less defined for the attributes.

The XML Schema defines the rules more specified than a DTD. It not only contains elements and attributes, but also data types. In this way, the XML documents are defined much more specified, which makes the validation more advanced. It is written in a shaped format so that users can specify the root, elements and attributes quickly. The XML Schema is such a powerful validating language that it is more or less complicated to implement.
There are a number of advantages to using XML Schemas over DTDs. In particular:

· As they are written in XML syntax (which DTDs were not), users do not have a new syntax to learn before starting learning the rules of writing a schema. It also means that users can use any of the tools they would use to work with XML documents (from authoring tools, through SAX and DOM, to XSLT), to work with XML Schemas.

· The support for datatypes used in most common programming languages, and the ability to create a own datatypes, means that user can constrain the document content to the appropriate type required by applications, and / or replicate the properties of fields found in databases.

· It provides a powerful class and type system allowing an explicit way of extending and re-using markup constructs, such as content models, which is far more powerful than the use of parameter entities in DTDs, and a way of describing classes of elements to facilitate inheritance.

· The support for XML Namespaces allows users to validate documents that use markup from multiple namespaces and means that users can re-use constructs from schemas already defined in a different namespace.
· They are more powerful than DTDs at constraining mixed content models
Summary
To sum up, we have looked at the basics of the W3C XML Schema syntax, and how we can declare which elements and attributes are allowed to appear in our XML documents. We also alluded to some of the more complicated features, such as the use of namespaces, named complex types and different compositors. Also we have learnt how to validate instance documents and XML schema using XSD tools. Finally we made a comparison between a DTD and the XML schema

Citation

[1] http://en.wikipedia.org/wiki/XML_schema
[2] http://en.wikipedia.org/wiki/Document_Type_Definition
[3] Documentation form Barry Dowdeswell (AARN Innovation Limited)

AARN Mapping tools research.doc
[4] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Structure of Data Type Definitions for XML messages.doc
[5] Documentation form Barry Dowdeswell (AARN Innovation Limited)

autoack.b2be.dtd
[6] Documentation form Barry Dowdeswell (AARN Innovation Limited)

DEC_B2B_AUTOACK.XML
[7] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Schema_PO_v1.40.xml
[8] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Foodstuffs_Purchase_Order.xml
[9] http://en.wikipedia.org/wiki/XML
The Purchase Order, po.xml

<?xml version="1.0"?>

<purchaseOrder orderDate="1999-10-20">

 <shipTo country="US">

 <name>Alice Smith</name>

 <street>123 Maple Street</street>

 <city>Mill Valley</city>

 <state>CA</state>

 <zip>90952</zip>

 </shipTo>

 <billTo country="US">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <comment>Hurry, my lawn is going wild!</comment>

 <items>

 <item partNum="872-AA">

 <productName>Lawnmower</productName>

 <quantity>1</quantity>

 <USPrice>148.95</USPrice>

 <comment>Confirm this is electric</comment>

 </item>

 <item partNum="926-AA">

 <productName>Baby Monitor</productName>

 <quantity>1</quantity>

 <USPrice>39.98</USPrice>

 <shipDate>1999-05-21</shipDate>

 </item>

 </items>

</purchaseOrder>
The Purchase Order Schema, po.xsd

xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Purchase order schema for Example.com.

 Copyright 2000 Example.com. All rights reserved.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">

 <xsd:sequence>

 <xsd:element name="shipTo" type="USAddress"/>

 <xsd:element name="billTo" type="USAddress"/>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="items" type="Items"/>

 </xsd:sequence>

 <xsd:attribute name="orderDate" type="xsd:date"/>

 </xsd:complexType>

 <xsd:complexType name="USAddress">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:decimal"/>

 </xsd:sequence>

 <xsd:attribute name="country" type="xsd:NMTOKEN"

 fixed="US"/>

 </xsd:complexType>

 <xsd:complexType name="Items">

 <xsd:sequence>

 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="productName" type="xsd:string"/>

 <xsd:element name="quantity">

 <xsd:simpleType>

 <xsd:restriction base="xsd:positiveInteger">

 <xsd:maxExclusive value="100"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="USPrice" type="xsd:decimal"/>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="partNum" type="SKU" use="required"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->

 <xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

Database

data

EDIS events

script

source

XML message

EDIS map

Schema

Compile source

Run script

build

